
 1

From Research to Operations: Integrating Components of
an Advanced Diagnostic System with an Aspect-Oriented

Framework 1,2

Daryl P. Fletcher
Science Applications International Corporation (SAIC)

NASA Ames Research Center
Moffet Field, CA. 94035

650-604-0159
dpfletcher@mail.arc.nasa.gov

Faisal Akkawi
Illinois Institute of Technology

Chicago, IL. 60616
312-567-5122

akkawif@iit.edu

Richard L. Alena
NASA Ames Research Center

Moffet Field, CA. 94035
650-604-0262

Richard.L.Alena@nasa.gov

Daniel P. Duncavage
International Space Station Program

NASA Johnson Space Center
Houston, TX. 77058

281-792-5478
Daniel.P.Duncavage@nasa.gov

1 U.S. Government work not protected by U.S. copyright.
2 IEEEAC paper #1333, Version 1, Updated August 27, 2003

Abstract�Bringing technology from the research world
into an operational environment poses many challenges.
Typically, software systems having their origins in low
Technical Readiness Level research projects have few, if
any, formal requirements associated with them. This
paucity of formal requirements coupled with the
challenges associated with coordinating multiple,
distributed research-oriented software projects makes it
difficult to design and build software systems that will
ultimately be useful in an operational environment.

Targeted for current and next-generation space vehicles,
the diagnostic applications that compose the Advanced
Diagnostic System (ADS) under development in our lab
at NASA-Ames Research Center are realizations of
research projects associated with multiple organizations
and generally are not designed according to stringent
requirements nor with integration into the ADS
environment in mind. The core functionality of a
Diagnostic Client Application, usually having its basis in
artificial intelligence research, is the primary (and
perhaps sole) consideration of the application developer.
Research funds generally are not available for
implementing aspects such as logging and security, both
of which are critical in aerospace diagnostic systems such
as the ADS. In order to leverage funding sources and
integrate these separate research projects into a coherent
whole suitable for deployment in an operational
environment, it is important for the systems integrator to
be able to easily (affordably) weave these aspects into the
software system. Furthermore, Diagnostic Client

Applications produce knowledge products, such as
subsystem state estimates, that other applications within
the ADS universe can use to augment their awareness of
the larger system with the goal of generally increasing
the effectiveness of the ADS. Taking a holistic approach
to knowledge sharing in a software system developed by
multiple, loosely-coupled research projects poses a
challenge to the systems integrator that goes beyond
fundamental inter-process communication issues.
However, the challenge can be met and the goal of a
more effective ADS can be achieved through the use of
emerging data representation technologies.

Aspect-Oriented Programming (AOP) is a new software
development methodology that complements Object-
Oriented Programming and addresses the complexity of
software systems by achieving a separation of functional
and interaction components (aspects). Aspects such as
logging and security are defined as properties that cut
across groups of functional components (diagnostic
applications). Aspects can be thought about and
analyzed separately from each other and from the core
functionality of the software system. AOP provides the
modular separation of crosscutting concerns, where the
aspect code is scattered/tangled throughout the software
system. An AOP Framework takes advantage of what
AOP provides and enables us to build software systems
that can be extended and adapted during runtime.

In this paper we present an AOP Framework for
integrating software components into an Advanced

 2

(artificial intelligence-based) Diagnostic System and
introduce a basic ontology for sharing knowledge
between a community of diagnostic applications (agents).
 The ontology and AOP Framework can be applied to the
development of diagnostic and prognostic decision
support systems for current as well as next-generation
space vehicles such as the International Space Station
and Orbital Space Plane.

 TABLE OF CONTENTS

...
1. INTRODUCTION..................................... 2
2. THE DYNAMIC WEAVER FRAMEWORK . 3
3. ADS COMPONENT INTEGRATION USING

THE DYNAMIC WEAVER
FRAMEWORK 6

4. SHARING KNOWLEDGE IN THE ADS.....10
5. CONCLUSION14
REFERENCES ...14
BIOGRAPHY ...15

 1. INTRODUCTION
Software development and maintenance is a major cost
center of current projects in the NASA International
Space Station (ISS) Program, yet the final requirements
for software are never complete before the majority of the
software has been written. This situation is the result of
a number of driving forces and is likely to become even
more acute in next generation systems. The nature of
NASA projects drives us into new realms of design and
therefore unforeseeable problems, which result in
changes to software. In addition to requirements that
change as a result of technological unknowns, the
evolution of security policies and application
traceability/transparency requirements impact the
software development process. These changes to
requirements, as well as typical defect corrections, drive
costs both during the design/build/test phase and in the
sustaining engineering phase.

To address the issues of vague and/or changing
requirements in a complex software development project
such as the Advanced Diagnostic System (ADS), we use
Aspect-Oriented Programming (AOP) [1, 2, 3, 4, 5, 6, 7]
methodology to separate a program�s functional
components from the interaction components (aspects).
Aspects are defined as properties that cut across groups
of functional components. While these aspects can be
thought about and analyzed relatively separately from the
basic functionality, at the implementation level they must
be combined together. Programming them manually into
the system�s functionality using current component-
oriented languages results in aspects being spread

throughout the code. This code tangling makes the
source code difficult to develop, understand and evolve
because it destroys modularity and reduces software
quality [6]. In this paper we show how to deploy aspect-
oriented technology, which provides an architectural
support for the design and development of intelligent
concurrent systems. We show how the aspect code can
be isolated from the functional components that
otherwise would be intermingled with the code of the
functional components. Isolating the functional
components from the non-functional components, the
aspect code, has many attractive benefits: first and
foremost it promotes reusability for the functional classes
and the aspect classes. It also simplifies the design of
complex systems, since the interaction code is separated
from the functional code. Using the ADS under
development at NASA-Ames Research Center as an
example of an intelligent systems software development
project, we will show how using an Aspect-Oriented
Framework can facilitate building reconfigurable
intelligent systems, lower software development and
maintenance costs and improve overall software quality.

In addition to the apparent advantages of
reconfigurability and isolation of core functionality from
other utility-type aspects, intelligent systems naturally
benefit from the sharing of knowledge throughout the
system, and an agent�s usefulness to the community can
be enhanced through its understanding of the
environment in which is exists. There are several
mechanisms through which knowledge sharing and reuse
can be accomplished including simple lookup tables and
distributed object technologies such as XML-RPC and
CORBA. However, recent work on Semantic Web3
technologies has produced a rich set of tools and concepts
specifically designed for the representation of data in
web-based distributed systems such as the ADS. The
OWL Web Ontology Language4 (a W3C Candidate
Recommendation) has been developed specifically to
describe and represent a body of knowledge in a
computer-usable format. While this is still nascent
technology, the potential benefits of using an ontology
based on emerging standards exceeds the potential risks.

In section 2 we provide an overview of the Dynamic
Weaver Framework architecture in sufficient detail to
give the reader a basic understanding of its usage. A
more in-depth treatment can be found in the DWF
documentation that will be made available for download
in early 2004 along with the entire DWF
implementation. Section 3 provides an overview of the
ADS architecture and presents three Diagnostic Client
Applications, still in early stages of development, that are

3 W3C Semantic Web
4 Frequently Asked Questions on W3C's Web Ontology Language (OWL)

 3

prime candidates for integration into the ISS ADS using
the DWF. In section 4 we discuss the problem of
information sharing in the ADS and present a basic
ontology for knowledge sharing and reuse based on the
OWL Web Ontology Language. We conclude by
discussing the benefits derived from using the DWF and
ADS ontology as tools for moving research-oriented
software projects toward operational deployment.

 2. THE DYNAMIC WEAVER FRAMEWORK
The Dynamic Weaver Framework (DWF) is an aspect
oriented language independent framework. It achieves
the separation of concerns by separating the properties of
the system such as logging, security, scheduling, etc.,
from the functionality of the system then it weaves them
together at run time to achieve the overall application
system. The DWF employs Java reflection to use the
dynamic proxy[4] in order to achieve dynamic
adaptability at run time. In this framework, aspects can
be added and removed from the system during run time
without the need to take the system down to recompile
the code. The framework has the ability to attach/detach
any aspect to/from the running system, establish
communication between any two modules in the system,
or redirect communication from one component to the
other.

The DWF enables applications to adapt to environmental
changes at run time, because components and aspects are
independent of each other and they are woven into the
system at run time. The components and the aspects in
the DWF must have a predefined interface, but the users
are free to change the class implementation at run time.
The DWF provides us with the capability of adding and
removing aspects as well as �point cuts� during runtime.
 This capability will enable us to support
reconfigurability and dynamically adapt to changes in the
deployment environment with minimal impact on the
running system.

The Dynamic Weaver Framework has the following
advantages:

1. We achieve a high level of abstraction since the
designer makes the programmer�s job easier by reasoning
about individual concerns in isolation from each other.

2. Concern reuse. Separation of crosscutting concerns
provides the software with a loose coupling between the
different concerns, achieving the usability of a single
concern.

3. No restrictions are imposed by the software application
specification. In aspect-oriented software development,

software applications must define when they are going to
be adapted at run time by specifying the �join points�. In
the DWF, the software application is adaptable at run
time an its structure can be inspected and dynamically
customized, obviating the need to specify what might be
adapted and at what time.

4. The DWF is a language independent framework. The
system or the software application may be programmed
using any language.

5. Application concerns are defined at design level and
not at the language or the programming language level,
which provides a loose coupling between the design and
the implementation, making an aspect more reusable.

6. The DWF achieves a full separation between the
functional code and the reusable aspects, which avoids
the tangling of application source code, achieving ease of
maintenance and adaptation of applications to a new
aspect.

In general, the aspect-oriented paradigm has the
following elements:

• Aspect: The modular representation for a cross-

cutting concern. A concern may cross-cut one or
more components; security and logging are examples
of cross-cutting concerns.

• Core functional component: A set of software
modules that together contribute to the basic identity
of the larger system.

• Weaver: The engine that weaves aspects along with
their respective core functional components.

• Join point: Determines the granularity of the
weaving process. In the DWF it is at the method call
level.

• Point cut: An aspect may have different
implementations for different methods; a point-cut
represents the specific aspect implementation that
will be associated with a specific method(s) of the
core functional components. For example, different
security policies may be applied to different methods
defined in the same component.

• Advice: The actual code that will be executed when
the control flow reaches the join-points.

Dynamic Weaver Framework Architecture

In this section we provide an overview of the main DWF
components. A complete description of the DWF
components can be found in the DWF documentation5.

5 The DWF and documentation will be available for download in early
2004.

 4

Aspect Weaver�The AspectWeaver class takes
advantage of the dynamic proxy [4] capability in Java
1.3. The framework structure is depicted in the class
diagram in Figure 1. Each class uses a dynamic proxy
class, which represents the aspect weaver class. A
software system has a number of aspects, and each aspect
has a number of point cuts. Each point cut has an advice
class containing the two methods beforeAdvice() and
afterAdvice() that will be executed when control reaches
the join points. The semantics of aspect, point cut, and
advice are similar to the ones cited in AspectJ6.

The AspectWeaver weaves classes and their perspective
aspects at runtime. The AspectWeaver intercepts
messages coming to the component and redirects them to
the AspectRepository. The AspectRepository stores
information about the aspect(s) (e.g. scheduling,
synchronization, security�) and the order in which they
have to be executed. The DWF has a loose coupling
between the component and the aspects, because the
component and the aspects do not have direct references
between them.

The AspectWeaver interacts with the clients and does the
actual weaving of aspects while the application is
running. All communication between the functional
components and the aspects of the system is
accomplished through the AspectWeaver class.

As mentioned above the AspectWeaver is a dynamic
proxy, which directly interacts with the clients and does
the actual weaving of aspects while the application is
running. Whenever a client calls an aspect method, the
AspectWeaver executes the invoke method in the
AspectWeaver class. The invoke method in turn executes
the AspectRepository�s beforeAdvice() method. If the
call is successful, the actual operation will be executed.
When the task is finished, the AspectWeaver will invoke
the afterAdvice() method in the AspectRespository.

In summary, the AspectWeaver class plays two roles in
the DWF. First, it intercepts every method called by the
system and redirects communication to the
AspectRepository by invoking the beforeAdvice() method
of the AspectRespository. Second, The AspectWeaver
class is responsible for weaving aspects into core
functional components at run time.

Aspect Repository�As mentioned in the AspectWeaver
class, every method call to the component is intercepted
by the AspectWeaver. The AspectWeaver then delegates
responsibility to the AspectRepository to evaluate a set of
conditions by invoking its beforeAdvice() method. The
AspectRepository then evaluates all required aspects of

6 Eclipse Projects-AspectJ

the calling method. Upon successful return of the
beforeAdvice() method, a value of RESUME will be
returned to the AspectWeaver in which the
AspectWeaver then invokes the method on the core
functional component itself. Upon the completion of the
execution of the method the AspectWeaver will invoke
the afterAdvice() method in the AspectRespository.

Aspect Table�The AspectTable is implemented using a
hash and resides in the AspectRespository class. It
contains all aspects that have been registered in the
framework and is used only in the AspectRepository.
Initially the AspectTable is empty and is subsequently
loaded with an aspect by calling the addAspect() method
in the AspectRespository.

The addAspect() method will insert any aspect name that
you provide to the system into the AspectTable along
with an index and an object that contains the actual
aspect. Similarly, removing an aspect from the
AspectTable can be done by calling the removeAspect()
method in the AspectRepository class.

Aspects�An AspectTable can contain multiple Aspect
objects and each Aspect can contain multiple Pointcuts.
We represent an aspect object as a hash table that exists
in the AspectTable. Every time an aspect is added to the
AspectTable a new hash table is instantiated and inserted
into a new row in the AspectTable inside the
AspectRepository. Each aspect can contain multiple
Pointcuts and every Pointcut may contain one or more
join points.

Point cuts�An Aspect can contain multiple Pointcut
objects and each Pointcut can contain multiple Advices.
The method addAdvice() is used for adding a new advice.
The removeAdvice() method removes an advice from a
given Pointcut. The beforeAdvice() and afterAdvice()
methods are invoked by the corresponding Aspect�s
methods of the same name.

Advices�The actual behavior of each aspect is provided
by an object whose interface is defined by AdviceIF.
They will be woven during runtime by the dynamic
proxy, i.e., AspectWeaver. The beforeAdvice() method
returns one of the integer constants defined in the
AspectRepository; RESUME, BLOCK, and ABORT.

 5

Figure 1: Dynamic Weaver Framework class diagram

 6

3. ADS COMPONENT INTEGRATION USING
THE DYNAMIC WEAVER FRAMEWORK

The Advanced Diagnostic System (ADS) under
development in the Intelligent Mobile Technologies
(IMT) Lab at NASA-Ames Research Center [13] is an
intelligent decision support system for current and next-
generation space vehicles such the International Space
Station (ISS) and Orbital Space Plane (OSP). In the
following sections we show how ADS development can
benefit from using the Dynamic Weaver Framework for
integrating components into the ADS ecosystem.

The Diagnostic Client Applications (DCAs) that
compose the ADS are realizations of research projects
associated with multiple organizations and generally are
not designed according to stringent requirements nor
with integration into the ADS in mind. The core
functionality of a DCA, usually having its basis in
artificial intelligence research, is the primary (and
perhaps sole) consideration of the DCA developer.
Research funds generally are not available for
implementing aspects such as logging, debugging or
security, all of which are critical in a flight-qualified
system such as the ADS. Furthermore, the logging and
security requirements are not well understood at design
time and are likely to evolve throughout the development
and maintenance phases. It is therefore important for the
systems integrator to be able to easily (affordably) weave
these aspects into the system, even after the system has
been deployed on-orbit.

Advanced Diagnostic System Overview

The ISS ADS architecture is summarized in the
following figure:

Figure 2: ISS Advanced Diagnostic System Architecture

The Advanced Diagnostic System is composed of a
number of Diagnostic Client Applications (DCAs) that
reside both on board and on the ground. The DCAs
obtain pre-processed avionics data from the on-board
Diagnostic Data Server (DDS) using a publish/subscribe
architecture. Diagnostic clients are generally artificial
intelligence-based applications such as artificial neural
networks, Bayesian belief networks, fuzzy cognitive maps
and model-based reasoners that integrate data across sub-
systems. The collaborative product of the DCAs is the
Advanced Diagnostic System, a decision support tool
targeted for use by crew, flight controllers and back-room
engineering groups on the ground.

The DDS inputs are provided by Data Collection Engines
(DCEs) that interact directly with trusted, lower-level
avionics components such as MIL-STD 1553 data buses
and the Command and Control
Multiplexer/Demultiplexer (MDM) Current Value Table,
a shared memory construct of the ISS Command and
Control Software. Core DDS functions create derived
data products, such as Caution and Warning messages,
and make them available to DCAs through a
publish/subscribe architecture. A DCA can share data
products with its peers using the DDS publish/subscribe
mechanism.

The MIL-STD 1553 protocol used for the data bus on the
ISS is a synchronous, deterministic protocol that uses
three data rates to transport parameters throughout the
C&C system: 10 Hz, 1 Hz and 0.1 Hz. The DCEs that
interact with the MIL-STD 1553 buses must process the
raw data within the boundaries of these three data rates
and are therefore hard real-time tasks. The pre-
processing functions associated with the DDS can buffer
data coming from the DCEs and are categorized as soft
real-time tasks.

Advanced Caution and Warning Diagnostic Client
Application Overview

In this section, we focus on a the Advanced Caution and
Warning (ACW) Diagnostic Client Application (DCA),
composed of an alarm filtering function, implemented as
an Artificial Neural Network (ANN) and an alarm
correlation function, implemented as a Bayesian Network
(BN)7.

Fault detection and isolation (FDI) is a function of the
Advanced Diagnostic System that uses messages (alarms)
created by the Caution and Warning software of the
complex system under management (diagnosis). These
caution and warning messages are published to a
subscriber DCA (the Advanced Caution and Warning

7 Also called a belief network or causal network.

 7

filtering function) by the Diagnostic Data Server. In a
complex system such as the International Space Station
or Orbital Space Plane, a component or subsystem fault
event can generate tens, hundreds or even thousands of
alarms (an �alarm storm�), some significant percentage of
which may not be related to the root cause of the fault
event. Operations personnel, either through training or
experience, can visually filter some portion of the
unrelated alarms (noise) in order to reduce the sample
space of probable root causes (isolation). Time is usually
critical during FDI activities and the Advanced Caution
and Warning filtering function reduces the noise in the
alarm stream, aiming to reduce the time required for
FDI. Once the noise has been filtered from the alarm set,
alarm correlation can be performed either by a human or
automated process. When an automated process such as a
Bayesian Network is used for alarm correlation, the
ACW filtering function acts as a preprocessor to reduce
the size of the input vector, thereby speeding up
convergence.

A supervised learning technique is used to train the ANN
alarm filter to recognize and filter extraneous alarms
based on the current state (mode) of the ISS. For
instance, when the ISS mode transitions from �Standard�
to �Proximity Operations� in preparation for a planned
docking event, certain nuisance alarms are generated that
can be safely filtered from the alarm stream. An
operational benefit derived from this function is that
these nuisance alarms don�t have to manually suppressed
(and then reactivated) each time one of these extraneous
alarm-producing events occur. This manual
deactivation/reactivation of alarms is a potential safety
risk that we aim to mitigate with the ANN alarm filter.

A Bayesian Network is a directed acyclic graph8 where
the nodes represent random variables and the arcs
represent the probabilistic relationships between them.
The parents of a node X are those variables that are
judged to be direct causes of X or to have direct influence
on X [15]. A conditional probability is specified for each
node (variable) and the graph can be considered as
representing the joint probability distribution for all the
variables. Sterritt et.al. have shown that a Bayesian
Belief Network can be effectively used as part of an
intelligent fault management system for
telecommunications networks and the ADS BN alarm
correlator DCA is largely based on the work presented in
that paper [16].

The Java Neural Network Simulator (JavaNNS910) is the
kernel of the ACW filtering function and JavaBayes11

8 A directed graph where no path starts and ends at the same vertex.
9 I. Fischer, F. Hennecke, C. Bannes, A.Zell: Java Neural Network
Simulator User Manual, Version 1.1, University of Tubingen

provides the core inference engine for the alarm
correlation function.

Figure 3: ACW DCA architecture

We integrate the ACW DCA into the ADS using the
Dynamic Weaver Framework. The ACW filtering
function and the Bayesian Network alarm correlator were
designed with minimal security and logging aspects, both
of which are important concerns for a system targeted for
flight qualification such as the ADS. Using the Dynamic
Weaver Framework, previously flight-qualified cross-
cutting concerns such as logging and security can be
woven into the ACW DCA at runtime thereby
eliminating the need to re-qualify these aspects resulting
in lower flight qualification costs. As requirements for
logging and security inevitably evolve, these cross-
cutting concerns can be handled separately from the core
functions of the ACW DCA.

A Fuzzy Cognitive Map Toolkit for Decision Support

In addition to the ACW DCA, the current ADS
architecture includes a Fuzzy Cognitive Map (FCM)
Toolkit that can be used for modeling complex,
dynamical systems.

A FCM [8, 9] is a fuzzy, signed directed graph with
feedback where the nodes represent concepts and a
directed edge eij measures how much concept Ci causes
Cj. A time varying concept Ci(t) measures the degree of
occurrence of some event, such as the degree to which a
component has failed or the �strength� of subsystem
health, and can take on values in the fuzzy interval [0, 1].
 The edges eij take on values in the fuzzy interval [-1, 1]
where eij = 0 indicates no causality from Ci to Cj, eij > 0

10 JavaNNS is Copyright (c) 1996-2001 JavaNSS Group, Wilhelm-
Schickard-Institute for Computer Science (WSI), University of Tubingen,
Sand 1, 72076 Tubingen, Germany.
11 JavaBayes is distributed under the GNU General Public License.

 8

indicates causal correlation in the same direction (Cj
increases as Ci increases or Cj decreases as Ci decreases)
and eij < 0 indicates negative causal correlation (Cj
decreases as Ci increases or Cj increases as Ci decreases).
Operations on the graph can be performed using matrix-
vector operations.

Fuzzy Cognitive Maps differ from probabilistic decision
support systems such as Bayesian Belief Networks. In a
probabilistic context, when a random event occurs (such
as the event of �heads� when a coin is tossed), the event
occurs completely, i.e. the result of the experiment is
either entirely heads or entirely tails. Comparatively,
events in a FCM occur deterministically but to varying
degrees, such as �light rain� or �bright sunshine�. If a
fuzzy event is non-deterministic, we can integrate the two
approaches to create a compound statement describing
the probability of a fuzzy event, such as �a 20 percent
chance of light rain�.

A FCM is usually constructed by a knowledge engineer
who acquires domain knowledge from systems experts
and uses that knowledge to define the concepts, causal
directions and fuzzy values of the nodes and edges of the
graph. As an example, consider the High Level ISS
System Health Monitor DCA shown below implemented
as a FCM representing the causal relations of the fuzzy
concepts of Command and Data Handling (C&DH)
Subsystem health (C1), Electrical Power Subsystem
(EPS) health (C2), Thermal Control Subsystem (TCS)
health (C3), Channel 2B battery low (C4) and Low
Temperature Loop (LTL) heat exchanger can�t reject
heat (C5):

Figure 4: A High-level ISS Systems Health Monitor DCA
implemented as a Fuzzy Cognitive Map

Subsytem experts have different opinions regarding the
degree to which the health of one subsystem affects the
health of others. The knowledge engineer can conduct
multiple interviews with subsystem experts and combine

each of the resulting FCMs to construct a new FCM that
cumulatively embodies the knowledge of each of the
experts. A weighting function can be used to give more
weight to a FCM constructed from an interview with a
more experienced systems engineer and a lesser weight to
one constructed on advice from a less experienced
systems engineer. The resulting FCM is a linear
combination of the separate FCMs:

F = ∑ wiFi

Equation 1: FCM combination

When the FCMs are combined, a threshold function is
used to map the connection values to the interval [-1, 1]
and the concept values to the interval [0, 1]. The
example FCM can be represented as a concept vector:

Ct(0) = [1.0, 1.0, 1.0, 1.0, 0.1]

Figure 5: Initial FCM concept vector

and a connection (edge) matrix E:

Figure 6: FCM connection matrix for the FCM in Figure
4

The entries in the concept vector C(0) are initial
estimates of the concept values given the conditions that
the LTL Heat Exchanger has lost 10% of its heat
rejection capacity and the Channel 2B battery is
completely discharged. The entries in the connection
matrix E are the result of applying Equation 1 to a series
of connection matrices derived from interviews with
multiple subsystem experts.

A FCM is a dynamical system that can simulate the
behavior of the process being modeled [14]. Successive
matrix-vector multiplications are performed with the
output of one operation being used as the input to the
next. The FCM simulation will either diverge or
converge to a fixed point (a single vector) or limit cycle
(repeating pattern of vectors). While holding the
connection values fixed and �clamping� (firing) the C4
and C5 concepts to simulate the LTL Heat Exchanger
and Channel 2B battery failure modes, the FCM
converges to a new set of concept values:

 9

C(t) = [0.83, 0.80, 0.78, 0.73, 0.73]

Figure 7: FCM concept vector after iteration

These new equilibrium values for concepts C1, C2 and
C3 are interpreted as follows: given the causal relations
represented by the connection matrix and the initial
estimates of subsystem health, the computed health
measures for the C&DH, EPS and TCS subsystems are
83%, 80% and 78%, respectively, when failure
conditions C4 and C5 occur simultaneously. In another
simulation, firing C5 alone yields:

C(t) = [0.84, 0.84, 0.79, 0.0, 0.73]

Figure 8: FCM concept vector after fault condition C4 is
removed

showing that the removal of fault condition C4 increases
C&DH health by one percent, EPS health by four percent
and TCS health by one percent. Removing fault
condition C5 yields similar results.

The FCM Toolkit can be used to build more complex
models than the previous example and has a Differential
Hebbian Learning (DHL) function that can imply a
connection matrix from a time series of concept
observations. When the number of concepts being
modeled becomes large, the DHL function relieves the
user of having to construct a graphical FCM by hand and
simply uses recorded observations of each concept
individually, �learns� the causal strengths according to
changes in causation over time and automatically
produces a connection matrix that can be used as a model
for the complex system.

The ACW DCA, FCM Toolkit and the Dynamic Weaver
Framework

The kernel of the ACW artificial neural network (ANN)
filtering function, the Bayesian network (BN) core
inference engine of the alarm correlation function and
the computational engine of the FCM Toolkit are core
functional components of the ISS ADS. The ANN
filtering function receives input vectors of alarms from
the Diagnostic Data Server (DDS) and the BN
correlation function receives its input vectors from the
ANN filtering function. The BN then publishes its result
set back to DDS so that other ADS DCAs can subscribe
to the results of the belief network inference. Similarly,
the FCM Toolkit core computational engine produces
result vectors from ad-hoc simulations that may be of
value to other DCAs in the ADS ecosystem and data
products of other DCAs can provide useful knowledge for
a given FCM model. A security aspect associated with
each core functional component ensures that input data is

coming from a trusted source and a logging aspect
supports transparency so that the end user can see how a
DCA has come about its results.

Figure 9: DCA Crosscutting concerns (non-Aspect-

Oriented view)

From the above figure, it�s clear that the logging and
security aspects of the DCAs are scattered throughout the
core functional components of the ADS. The functional
requirements of these crosscutting concerns are likely to
evolve over time, both during the development phase and
later when the ADS has been flight qualified and
deployed on-orbit. Once a software system has been
deployed on orbit, changes to the running system are
difficult and expensive. Using the Dynamic Weaver
Framework (DWF) we aim to minimize the impact (cost)
that a security or logging requirements change will have
on the deployed system by achieving a separation
between the crosscutting concerns and the core
functionality of a DCA. This will allow us to make the
code base that is subject to change (and perhaps be re-
qualified) as small as possible. Furthermore, using the
DWF, the system will be able to adapt to changes
dynamically at runtime, eliminating the need to
shutdown and/or recompile the operational system to
accommodate new logging or security requirements.

 10

Figure 10: Aspect-Oriented view of the ACW and FCM

DCAs

In the DWF, the AspectWeaver class weaves classes and
their perspective aspects, such as logging and security, at
runtime. In the case of the security aspect, the
AspectWeaver intercepts the input vector to the core
functional component and redirects it to the
AspectRepository. The AspectRepository stores
information about the logging and security aspects and
the order in which they have to be executed. The DWF
provides a loose coupling between the core functional
components and the aspects, because the components and
the aspects do not have direct references between them.
All communication between the core functional
components and the aspects of the system is
accomplished through the AspectWeaver class.

The AspectWeaver is a dynamic proxy that directly
interacts with the clients. In the security aspect, the
clients are the methods of the core functional components
that get input vectors from their buffers. In the logging
aspect, the clients are the methods of the core functional
components that write out log messages. Whenever a
client calls a logging or security method, the
AspectWeaver executes the corresponding invoke()
method in the AspectWeaver class. The invoke() method
then executes the AspectRepository�s beforeAdvice()
method. If the call is successful, the actual operation that
is a logging or security method will be executed. When
the method completes, the AspectWeaver will invoke the
afterAdvice() method in the AspectRepository.

Figure 11: ACW and FCM DCAs in the Dynamic
Weaver Framework

By using the Dynamic Weaver Framework to integrate
the ACW and FCM DCAs into the ADS environment, we
enhance the adaptability of the system and simplify
integration of reusable aspects such as logging and
security. These benefits provided by the DWF will lessen
the impact and costs associated with implementing
unforeseeable changes to the theses important
crosscutting concerns during the design/build/test and
sustaining engineering phases of the software life cycle.
The trade-off is a slight performance degradation due to
the fact that calls to aspect functions require the
additional overhead of making calls through the
AspectWeaver rather than directly invoking the aspect
function themselves.

We�ve shown how using the DWF can simplify (and
hence lower the cost) of integrating a DCA into the ADS
architecture at the cost of a slight performance trade-off,
but what happens when disjoint DCAs want to share
knowledge about their particular domain? The
Framework doesn�t address the semantics of knowledge
sharing and reuse. In the next section, we introduce a
basic ontology that will address these issues within the
ADS architecture.

4. SHARING KNOWLEDGE IN THE ADS

Within the ADS, diagnostic client applications produce
data products that are useful to other client applications.
For instance, the FCM DCA produces an ephemeral
concept vector representing the current state of certain
components within a given subsystem and the ACW
ANN Alarm Filter can use that subsystem state
information to augment its knowledge of the system
(included in the ISS state vector) in order to more
accurately filter extraneous alarms. If the ANN Alarm

 11

Filter knows that pertinent state information is available
from an agent within the ADS architecture, it doesn�t
have to go looking for it elsewhere. The BN Alarm
Correlator produces a list of root cause candidates for a
given subsystem fault that can be used by another DCA
concerned with that particular subsystem, e.g. an ad-hoc
FCM constructed to analyze a particular C&DH problem.
 While it is clear that the overall effectiveness of the ADS
can be enhanced by the sharing of certain data products
between DCAs, it is unclear how that knowledge should
be represented and shared within the ADS architecture.
Through what mechanism can agents publish their data
products and subscribe to the pertinent (and perhaps
ephemeral) data products of other agents, dynamically?

An ontology defines the vocabulary with which queries
and assertions are exchanged among agents (DCAs) [10].
In this section we present a basic ADS ontology that
describes ontological commitments enabling DCAs to
share data products and gain knowledge about the
environment in which they exist. The presented ontology
is basic because it will evolve over time as the concept of
ADS expands.

A Basic Ontology for the ADS

We could represent shared knowledge within the ADS
using a simple lookup table, but an ontology provides a
much richer set of constructs through which we can
formally describe the semantics of classes and properties
 of ADS resources. Furthermore, the ADS ontology can
be updated dynamically by the Diagnostic Data Server to
reflect the data products currently available at a given
point in time.

We use the OWL Web Ontology Language as the basis
for our ADS ontology since it is designed for use by
applications that need to process the content of
information rather than presenting information to
humans. OWL builds on web-based information
representation languages such as XML, Resource
Description Framework (RDF) and RDF Schema (RDF-
S) and goes beyond these languages in its ability to
represent machine-interpretable content on the Web12
[11].

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <rdf:RDF
3 xmlns:rdf=http://www.w3.org/1999/02/22rdf-syntax-
ns#
4 xmlns:rdfs=http://www.w3.org/2000/01/rdf-schema#
5 xmlns:dc=http://purl.org/dc/elements/1.0/
6 xmlns:owl=http://www.w3.org/2002/07/owl#

12 ADS ontology publication is limited to a secured intranet and is not
generally available on the Web.

7 xmlns=http://www.w3.org/2002/07/owl#>
8 <Ontology rdf:about=��>
9 <dc:title>ADS Ontology</dc:title>
10 <dc:creator>IMT Lab</dc:creator>
11 <dc:subject>OWL; ADS;</dc:subject>
12 <dc:publisher>Daryl Fletcher</dc:publisher>
13 <dc:date>2003-09-02</dc:date>
14 <dc:format>text/xml</dc:format>
15 <dc:language>en</dc:language>
16 </Ontology>

17 <owl:Class rdf:ID="ADS">
18 <label>Advanced Diagnostic System</label>
19 </owl:Class>

20 <owl:Class rdf:ID="DCA">
21 <label>Diagnostic Client Application</label>
22 </owl:Class>

23 <owl:ObjectProperty rdf:ID="Description">
24 <rdfs:domain><owl:Class>
25 <owl:unionOf rdf:parseType="Collection">
26 <owl:Class rdf:about="#ADS"/>
27 <owl:Class rdf:about="#DCA"/>
28 </owl:unionOf>
29 </owl:Class></rdfs:domain>
30 </owl:ObjectProperty>
31 <owl:ObjectProperty rdf:ID="Owner">
32 <rdfs:domain><owl:Class>
33 <owl:unionOf rdf:parseType="Collection">
34 <owl:Class rdf:about="#ADS"/>
35 <owl:Class rdf:about="#DCA"/>
36 </owl:unionOf>
37 </owl:Class></rdfs:domain
38 </owl:ObjectProperty>
39 <owl:ObjectProperty rdf:ID="Contact">
40 <rdfs:domain><owl:Class>
41 <owl:unionOf rdf:parseType="Collection">
42 <owl:Class rdf:about="#ADS"/>
43 <owl:Class rdf:about="#DCA"/>
44 </owl:unionOf>
45 </owl:Class></rdfs:domain>
46 </owl:ObjectProperty>

47 <owl:Class rdf:ID="ISS_ADS">
48 <label>ISS Advanced Diagnostic System</label>
49 <owl:subClassOf rdf:resource="#ADS" />
50 <owl:unionOf rdf:parseType=�Collection�>
51 <owl:Class rdf:about=�#ISS_CDH_DCA�/>
52 <owl:Class rdf:about=�#ISS_ECW_DCA�/>
53 </owl:unionOf>
54 </owl:Class>

55 <owl:Class rdf:ID="ISS_DCA">
56 <label>ISS Diagnostic Client Application</label>
57 <owl:subClassOf rdf:resource="#DCA" />

 12

58 </owl:Class>

59 <ISS_ADS owl:Class rdf:ID="imt_iss_ads">
60 <label>IMT Lab ISS ADS</label>
61 <Description>

An Advanced Diagnostic System for the
International Space Station under development in
the Intelligent Mobile Technologies Lab at NASA-
Ames Research Center

62 </Description>
63 <Owner>Dan Duncavage</Owner>
64 <Contact>daniel.p.duncavage@nasa.gov</Contact>
65 </ISS_ADS>

66 <owl:Class rdf:ID="ISS_FCM_DCA">
67 <owl:subClassOf rdf:resource="#ISS_DCA" />
68 </owl:Class>

69 <ISS_FCM_DCA rdf:ID="fcm_toolkit_dca">
70 <Description>

A core computational engine and set of graphical
tools for modeling complex systems using Fuzzy
Cognitive Maps

71 </Description>
72 <Owner>Daryl Fletcher</Owner>
73 <Contact>dpfletcher@mail.arc.nasa.gov</Contact>
74 <Publishes>
75 <ConceptVector>
76 <ReferenceInformation>
77 <document>FCM Toolkit
User�sManual</document>
78 </ReferenceInformation>
79 <rdfs:comment>

A concept vector consists of a time stamp followed
by a series of comma separated element state
estimations, terminated by a newline.

80 </rdfs:comment>
81 <dataProductFormat>
82 <timestamp rdf:datatype="&xsd;dateTime" \>
83 <cdh_health rdf:datatype="&xsd;float" \>
84 <eps_health rdf:datatype="&xsd;float" \>
85 <tcs_health rdf:datatype="&xsd;float" \>
86 </dataProductFormat>
87 <howToSubscribe>
88 <subscriberInstructions>

Send registered user name and password to the
following host and port along with subscribing
application�s IP address and port.

89 </subscriberInstructions>
90 <Host>xxx.xxx.xxx.xxx</Host>
91 <Port>18333</Port>
92 </howToSubscribe>
93 </ConceptVector>
94 </Publishes>
95 </ISS_FCM_DCA>

96 <owl:Class rdf:ID="ISS_ECW_DCA">
97 <owl:subClassOf rdf:resource="#DCA" />
98 </owl:Class>

99 <ISS_ECW_DCA rdf:ID="acw_dca">
100 <Description>
101 An Advanced Caution and Warning application that
filters alarms using an Artificial Neural Network and
performs fault correlation using a Bayesian Network.
102 </Description>
103 <Owner>Daryl Fletcher</Owner>
104 <Contact>dpfletcher@mail.arc.nasa.gov</Contact>
105 <Publishes>
106 <rdfs:comment>
107 All time stamps in published products are in ISO
8601 Format: yyyy-mm-dd hh:mm:ss.xxx.
108 </rdfs:comment>
109 <FilteredAlarms>
110 <ReferenceInformation>
111 <url>http://www.jsc.nasa.gov/c&w/index.html
112 </url>
114 <document>ISS Familiarization</document>
115 <document>C&DH Training Manual</document>
116 </ReferenceInformation>
117 <rdfs:comment>
118 Fields within alarm event blocks are separated by
commas. Event blocks are delimited by newlines.
119 </rdfs:comment>
120 <dataProductFormat>
121 <eventptr rdf:datatype=�&xsd;int� \>
122 <logtime rdf:datatype="&xsd;dateTime" \>
123 <dayofyear rdf:datatype=�&xsd;int� \>
124 <event rdf:datatype=�&xsd;int� \>
125 <alarmtype rdf:datatype="&xsd;string" \>
126 <ackstate rdf:datatype="&xsd;string" \>
127 <eventstate rdf:datatype="&xsd;string" \>
128 <status rdf:datatype=�&xsd;int� \>
129 <annstate rdf:datatype="&xsd;string" \>
130 </dataProductFormat>
131 <howToSubscribe>
132 <subscriberInstructions>
133 Send registered user name and password to the
following host and port along with subscribing
application�s IP address and port.
134 </subscriberInstructions>
135 <Host>xxx.xxx.xxx.xxx</Host>
136 <Port>17593</Port>
137 </howToSubscribe>
138 </FilteredAlarms>
139 <RootCauseAnalysis>
140 <ReferenceInformation></ReferenceInformation>
141 <rdfs:comment>
142 A root cause analysis consists of a time stamp
followed by a statement of root cause candidates
terminated by a newline.
143 </rdfs:comment>

 13

144 <dataProductFormat>
145 <timeStamp rdf:datatype="&xsd;dateTime">
146 <rootCauseCandidates rdf:datatype="&xsd;string">
147 </dataProductFormat>
148 <howToSubscribe>
149 <subscriberInstructions>
150 Send registered user name and password to the
following host and port along with subscribing
application�s IP address and port.
151 </subscriberInstructions>
152 <Host>xxx.xxx.xxx.xxx</Host>
153 <Port>17594</Port>
154 </howToSubscribe>
155 </RootCauseAnalysis>
156 </ISS_ECW_DCA>
157 </rdf:RDF>

Figure 12: The ADS ontology

Lines 1-16�These lines provide the namespace
references and form the header of the ontology.

Lines 17-19�The ontology specifies an ADS as a base
class that can be subclassed to represent different types of
ADSs, e.g. an International Space Station ADS or an
Orbital Space Plane ADS.

Lines 20-22�As with the ADS, the ontology specifies a
DCA as a base class that can be subclassed to represent
different types of DCAs, e.g. an International Space
Station DCA or an Orbital Space Plane DCA.

Lines 23-46�These lines assert that the ADS and DCA
classes have properties associated with them named
Description, Owner and Contact.

Lines 47-54�Define the class ISS_ADS, a subclass of
ADS specific to the International Space Station. The
class is composed of the union of two DCA subclasses,
namely an ISS_CDH_DCA and an ISS_ECW_DCA.
Each of these DCA subclasses can have multiple
instances representing distinct individuals, e.g., there can
be several different ISS_CDH_DCAs within the
ISS_ADS, each having its own identity.

Lines 55-58�Define the class ISS_DCA, a subclass of
DCA specific to the International Space Station. To
easily extend the ADS ontology to another domain such
as the Orbital Space Plane, we would simply define a
class OSP_DCA as another subclass of DCA.

Lines 58-65�Here we introduce an individual instance of
an ISS_ADS named imt_iss_ads. It has a Description,
an Owner and Contact information. We could have
another instance of an ISS_ADS developed by another
group, say group ABC, and name it abc_iss_ads. Then,

using the vocabulary established in the ADS ontology,
knowledge could be shared between multiple ADSs,
similar to the manner in which knowledge is shared
among DCAs.

Lines 66-68�Define the class ISS_FCM_DCA, a
subclass of ISS_DCA.

Lines 69-95� Here we introduce an individual instance
of an ISS_FCM_DCA named fcm_toolkit_dca. It has a
Description, an Owner and Contact information, as do
all DCAs and ADSs. Note the <Publishes> section
starting on line 74. Enclosed in this section is specific
information about how this DCA goes about sharing its
knowledge with the world around it. It has one data
product that it wishes to share; a <ConceptVector>.
There is a document included in the
<ReferenceInformation> section that this DCA believes
is relevant to the understanding of its <ConceptVector>
data product. Lines 79-80 contain a comment that is a
human-readable description of the <ConceptVector>
format, while the <dataProductFormat> section in lines
81-86 contains a machine-readable description of the
<ConceptVector> format. The <ConceptVector>
consists of a time stamp and values for the concepts
C&DH health, EPS health and TCS health. The
<howToSubscribe> section in lines 87-92 provides
information for agents that wish to subscribe to this
particular data product13.

Lines 96-98�Define the class ISS_ECW_DCA, a
subclass of ISS_DCA specific to the Emergency, Caution
and Warning (ECW) System.

Lines 99-156�Here we introduce an individual instance
of an ISS_ECW_DCA named acw_dca. This is the
Advanced Caution and Warning DCA described in this
document. It has a Description, an Owner and Contact
information and publishes two data products:
<FilteredAlarms> and <RootCauseAnalysis>. Note that
the overall ontological structure of acw_dca is the same
as that of fcm_toolkit_dca. The acw_dca provides links
to information it believes is important for understanding
its data products, as well as providing information for
potential subscribers. The details of this DCAs data
product descriptions are essentially the same as described
for the fcm_toolkit_dca and are not repeated here.

Line 157�Closes the ADS ontology.

13 In the ADS architecture, the <Host> and <Port> used for DCA data
product subscription information belong to the Diagnostic Data Server. A
DCA publishes only to the DDS; the DDS then publishes to all of the
subscribers, relieving a DCA of the burden of keeping track of all its
subscribers.

 14

In the ontology presented above, the ADS is a union of
classes that can be easily extended to include multiple
ADSs and even form a hierarchy of ADSs, much like the
�manager-of-managers� hierarchical structure typically
found in large-scale Network Management Systems [12]
where one ADS could become a DCA of another ADS.
The hierarchy of ADSs can evolve along with the
evolution of the complex system to which the ADS is
applied; smaller ADSs can be developed in parallel with
the complex system and then integrated to form a
coherent whole while maintaining a consistent
representation of ADS concepts. Using the ADS
ontology, DCAs within an ADS can dynamically
discover and subscribe to ADS resources using standard,
web-based technologies. Our ADS ontology is dynamic,
scalable, extensible, expressive in its conceptualization of
the ADS universe, is easily accessed by distributed agents
and is based on emerging standards easily adopted by
DCA developers.

5. CONCLUSION
This paper presents some of the challenges associated
with bringing software projects from the research world
into an operational environment. While the core
functional components of research-oriented software
applications can have great utility in an operational
setting, these applications often lack aspects important in
an operational environment such as logging and security.
 Furthermore, these stand-alone applications, sometimes
developed in isolation from one another, can produce
data products useful to other applications in a software
ecosystem.

We present the Dynamic Weaver Framework, an Aspect-
Oriented framework for dynamically weaving aspects
such as logging and security into disparate applications
at run-time. Aspect-Oriented methodology isolates code
that would otherwise be tangled throughout the software
system and separates utility-type aspects from the core
functional components, allowing research application
developers to focus resources on the research-oriented
components of the system. The Framework takes
advantage of the benefits of Aspect-Oriented
Programming and uses a dynamic proxy for weaving
aspects such as logging and security into the software
system at run-time, providing the systems integrator with
an economical method for bringing lower Technical
Readiness Level (TRL) research applications into
operational environments.

The Dynamic Weaver Framework is applied to the
Advanced Diagnostic System, under development at
Ames Research Center, which is composed of a set of
Diagnostic Client Applications developed from multiple
funding sources. While DCAs (agents) have utility as

stand-alone applications, they generate knowledge about
the system that can be shared throughout the ADS,
thereby increasing the overall effectiveness of the ADS as
a diagnostic system. To facilitate knowledge sharing and
reuse in the ADS, we present a basic ontology that
defines the vocabulary by which agents can exchange
knowledge within the ADS universe.

Using the Dynamic Weaver Framework to support code
reuse and simplify reconfiguration and the basic ADS
ontology to enhance the effectiveness of the ADS enables
the systems integrator to bring a better software system
into the operational environment at a lower cost.

 REFERENCES
[1] D. Bardou, �Roles, Subjects, and Aspects. How Do
They Relate?,� Position paper, ECOOP �98 Workshop on
Aspect-Oriented Programming, July 20�24, 1998.

[2] L. Berger, M. Dery and M. Fornarino, �Interactions
Between Objects: An Aspect of Object-Oriented
Languages,� Position paper, ECOOP �98 Workshop on
Aspect-Oriented Programming, July 20�24, 1998.

[3] M. Yuan and N. Richards, �Lightweight Aspect-
Oriented Programming,� Dr. Dobb�s Journal 351, 18�
22, August 2003.

[4] T. Barrett, �Dynamic Proxies in Java and .NET,
Separating cross-cutting concerns,� Dr. Dobb�s Journal
350, 18�26, July 2003.

[5] C. Lopes and G. Kiczales, �Recent Developments in
AspectJ,� ECOOP �98 Workshop on Aspect-Oriented
Programming, July 20�24, 1998.

[6] J. Pryor and N. Bastán, �A Reflective Architecture for
the Support of Aspect-Oriented Programming in
Smalltalk,� Position paper, ECOOP �98 Workshop on
Aspect-Oriented Programming, July 20�24, 1998.

[7] B. Bershad, S. Savage, P. Pardyak, G. Sirer, M.
Fiuczynski, D. Becker, S. Eggers, and C. Chamber,
�Extensibility, Safety and performance in the SPIN
Operating System,� 15th Symposium on Operating System
Principles, December 3�6, 1995.

[8] J.A. Dickerson and B. Kosko, �Virtual Worlds as
Fuzzy Cognitive Maps�, IEEE 1993.

[9] Bart Kosko, �Neural Networks and Fuzzy Systems�,
Prentice Hall, Inc., 1992.

 15

[10] T. Gruber, �What is an Ontology?,� http://www-
ksl.stanford.edu/kst/what-is-an-ontology.html

[11] W3C Candidate Recommendation, �OWL Web
Ontology Overview,� http://www.w3.org/TR/owl-
features/ , August 18th, 2003. Copyright © 2003 World
Wide Web Consortium, (Massachusetts Institute of
Technology, European Research Consortium for
Informatics and Mathematics, Keio University). All
Rights Reserved.
http://www.w3.org/Consortium/Legal/2002/copyright-
documents-20021231.

[12] David Perkins and Evan McGinnis, Understanding
SNMP MIBs, Prentice Hall PTR, 1997.

[13] D. Fletcher, R. Alena, �A Scalable, Out-of-Band
Diagnostics Architecture for International Space Station
Systems Support�, 2003 IEEE Aerospace Conference
Proceedings, March 8�15, 2003.

[14] C.D. Stylios, P.P. Groumpos, �Fuzzy Cognitive Map
in Modeling Supervisory Control Systems�, Journal of
Intelligent and Fuzzy Systems, Vol. 8, No. 2, pp. 83-98,
2000.

[15] Judea Pearl, Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference, Morgan
Kaufmann Publishers, Inc., 1988.

[16] R. Sterritt, A.H. Marshall, C.M. Shapcott, S.I.
McClean, �Exploring Dynamic Bayesian Belief Networks
for Intelligent Fault Management Systems�, Proc. IEEE
Int. Conf. Systems, Man and Cybernetics, V, pp. 3646-
3652, Sept. 2000.

BIOGRAPHY

Daryl Fletcher received his B.S. degree in Applied
Mathematics in 1993 and an M.S. degree in Engineering
in 1995 from the University of Colorado-Boulder and is
currently a Ph.D. student in Computer Science at the
University of Colorado-Denver. His background is in
systems development for aviation meteorology and
development of Network Management Systems for data
and voice networks. His research interests include
applications of computational intelligence for the
modeling, diagnosis and prognosis of complex systems.
Prior to joining SAIC, he was a software developer at the
National Center for Atmospheric Research in Boulder,
CO. and a consultant to Lucent Technologies and
Level(3) Communications, Inc.

Faisal Akkawi, whose area is software architecture for
concurrent systems, has been on the faculty of Illinois
Institute of Technology from 1998 to 2002. Currently he
is an adjunct Faculty in the Department of Computer
Science at Northwestern University. His research
interests include software architecture for concurrent
software systems, reactive/adaptive intelligent systems
and design issues of concurrent programming languages.

Richard Alena is a Computer Engineer and the Group
Lead for the Intelligent Mobile Technologies (IMT) Lab
and the Mobile Exploration System (MEX) testbed at
NASA Ames Research Center. The IMT team integrates
mobile hardware and software components into unique
systems capable of extending human performance
aboard spacecraft during flight and payload operations.
He was principal investigator for the Wireless Network
Experiment flown aboard Shuttle and Mir, technology
later adopted by the International Space Station
Program. Rick spent three summers in the Canadian
Arctic developing mobile technologies for human
planetary exploration. He has a MSEE&CS from
University of California, Berkeley.

Daniel Duncavage joined the International Space
Station team as a civil servant at Johnson Space Center
after completing his BSME and MSME at Northeastern
University in 1994. After almost five years working with
the Russian Space Agency handling management issues
concerning the US research work being performed on the
Russian Mir space station, Mr. Duncavage moved to the
ISS Avionics Office to improve onboard diagnostics. The
first set of tools he brought to the Station were employed
to save the Control Moment Gyros on ISS Flight 3A. This
success lead to the expansion of the effort that evolved
into the Advanced Diagnostic Systems R&D project, led
by Mr. Duncavage.

 16

